3.6.46 \(\int \frac {c+d x+e x^2+f x^3}{(a+b x^4)^{3/2}} \, dx\) [546]

Optimal. Leaf size=275 \[ -\frac {e x \sqrt {a+b x^4}}{2 a \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt {a+b x^4}}+\frac {e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt {a+b x^4}}+\frac {\left (\sqrt {b} c-\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} b^{3/4} \sqrt {a+b x^4}} \]

[Out]

1/2*(-a*f+b*x*(e*x^2+d*x+c))/a/b/(b*x^4+a)^(1/2)-1/2*e*x*(b*x^4+a)^(1/2)/a/b^(1/2)/(a^(1/2)+x^2*b^(1/2))+1/2*e
*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x/
a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(3/4)/b^(3/4)/(b*x^4+
a)^(1/2)+1/4*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arcta
n(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(-e*a^(1/2)+c*b^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2
))^2)^(1/2)/a^(5/4)/b^(3/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 275, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {1868, 1212, 226, 1210} \begin {gather*} \frac {\left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {b} c-\sqrt {a} e\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} b^{3/4} \sqrt {a+b x^4}}+\frac {e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt {a+b x^4}}-\frac {a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt {a+b x^4}}-\frac {e x \sqrt {a+b x^4}}{2 a \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(3/2),x]

[Out]

-1/2*(e*x*Sqrt[a + b*x^4])/(a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) - (a*f - b*x*(c + d*x + e*x^2))/(2*a*b*Sqrt[a +
 b*x^4]) + (e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*
x)/a^(1/4)], 1/2])/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) + ((Sqrt[b]*c - Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt
[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*b^(3/4)*Sqrt
[a + b*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1868

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[(a*Coeff[Pq, x, q] -
b*x*ExpandToSum[Pq - Coeff[Pq, x, q]*x^q, x])*((a + b*x^n)^(p + 1)/(a*b*n*(p + 1))), x] + Dist[1/(a*n*(p + 1))
, Int[Sum[(n*(p + 1) + i + 1)*Coeff[Pq, x, i]*x^i, {i, 0, q - 1}]*(a + b*x^n)^(p + 1), x], x] /; q == n - 1] /
; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {c+d x+e x^2+f x^3}{\left (a+b x^4\right )^{3/2}} \, dx &=-\frac {a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt {a+b x^4}}-\frac {\int \frac {-c+e x^2}{\sqrt {a+b x^4}} \, dx}{2 a}\\ &=-\frac {a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt {a+b x^4}}+\frac {e \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx}{2 \sqrt {a} \sqrt {b}}+\frac {\left (c-\frac {\sqrt {a} e}{\sqrt {b}}\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{2 a}\\ &=-\frac {e x \sqrt {a+b x^4}}{2 a \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt {a+b x^4}}+\frac {e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt {a+b x^4}}+\frac {\left (c-\frac {\sqrt {a} e}{\sqrt {b}}\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} \sqrt [4]{b} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.06, size = 116, normalized size = 0.42 \begin {gather*} \frac {-3 a f+3 b c x+3 b d x^2+3 b c x \sqrt {1+\frac {b x^4}{a}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {b x^4}{a}\right )+2 b e x^3 \sqrt {1+\frac {b x^4}{a}} \, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\frac {b x^4}{a}\right )}{6 a b \sqrt {a+b x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(3/2),x]

[Out]

(-3*a*f + 3*b*c*x + 3*b*d*x^2 + 3*b*c*x*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^4)/a)] + 2
*b*e*x^3*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^4)/a)])/(6*a*b*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.37, size = 250, normalized size = 0.91

method result size
elliptic \(-\frac {2 b \left (-\frac {e \,x^{3}}{4 b a}-\frac {d \,x^{2}}{4 a b}-\frac {c x}{4 b a}+\frac {f}{4 b^{2}}\right )}{\sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {i e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\) \(230\)
default \(-\frac {f}{2 b \sqrt {b \,x^{4}+a}}+e \left (\frac {x^{3}}{2 a \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )+\frac {d \,x^{2}}{2 a \sqrt {b \,x^{4}+a}}+c \left (\frac {x}{2 a \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(250\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*f/b/(b*x^4+a)^(1/2)+e*(1/2/a*x^3/((x^4+a/b)*b)^(1/2)-1/2*I/a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)
*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(
1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)))+1/2*d*x^2/a/(b*x^4+a)^(1/2)+c*(1/2/a*x/((x^4+a/b)*b)^(1/2)+
1/2/a/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2
)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + x^2*e + d*x + c)/(b*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.10, size = 129, normalized size = 0.47 \begin {gather*} \frac {{\left (b e x^{4} + a e\right )} \sqrt {a} \left (-\frac {b}{a}\right )^{\frac {3}{4}} E(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - {\left ({\left (b c + b e\right )} x^{4} + a c + a e\right )} \sqrt {a} \left (-\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) + {\left (b e x^{3} + b d x^{2} + b c x - a f\right )} \sqrt {b x^{4} + a}}{2 \, {\left (a b^{2} x^{4} + a^{2} b\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

1/2*((b*e*x^4 + a*e)*sqrt(a)*(-b/a)^(3/4)*elliptic_e(arcsin(x*(-b/a)^(1/4)), -1) - ((b*c + b*e)*x^4 + a*c + a*
e)*sqrt(a)*(-b/a)^(3/4)*elliptic_f(arcsin(x*(-b/a)^(1/4)), -1) + (b*e*x^3 + b*d*x^2 + b*c*x - a*f)*sqrt(b*x^4
+ a))/(a*b^2*x^4 + a^2*b)

________________________________________________________________________________________

Sympy [A]
time = 6.29, size = 131, normalized size = 0.48 \begin {gather*} f \left (\begin {cases} - \frac {1}{2 b \sqrt {a + b x^{4}}} & \text {for}\: b \neq 0 \\\frac {x^{4}}{4 a^{\frac {3}{2}}} & \text {otherwise} \end {cases}\right ) + \frac {c x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {3}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {5}{4}\right )} + \frac {d x^{2}}{2 a^{\frac {3}{2}} \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {3}{2} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

f*Piecewise((-1/(2*b*sqrt(a + b*x**4)), Ne(b, 0)), (x**4/(4*a**(3/2)), True)) + c*x*gamma(1/4)*hyper((1/4, 3/2
), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(5/4)) + d*x**2/(2*a**(3/2)*sqrt(1 + b*x**4/a)) + e*x**3
*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(7/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + x^2*e + d*x + c)/(b*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {f\,x^3+e\,x^2+d\,x+c}{{\left (b\,x^4+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(3/2),x)

[Out]

int((c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(3/2), x)

________________________________________________________________________________________